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FOREWARD

This document contains a detailed summary of all tasks performed under
this contract. Included are design description, design analysis,
fabrication procedures, hot-fire test data and analysis, and conclusions.
This document is submitted in fulfillment of the Final Report Data
Requirement of Task VI of Contract NAS 3-25142.




ABSTRACT

This report covers the effort expended by the Rocketdyne Division of
Rockwell International in fulfilling the requirements of the Space Station
Freedom Hydrogen/Oxygen Thruster Technology program. The report includes the
basis and the rationale for the design of the thruster, injector, and nozzle;
discusses the test and results; and presents the lessons learned, together
with conclusions and recommendations for the development of the Space Station
Freedom thrusters.
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1.0 INTRODUCTION AND SUMMARY

The primary propulsion requirements for the manned space station are long
life, reliability, and low maintenance as dictated by safety and life-cycle
cost considerations. The Space Station Freedom Phase B studies by the
National Aeronautics and Space Administration (NASA), Rocketdyne, and the
Phase B contractors indicated that gaseous oxygen/gaseous hydrogen (602/
GHZ) supplied by electrolysis of water would offer significant advantages
for the Freedom Station, when compared to other candidate propulsion systems.

The hazard and contamination levels of GOZ/GH are inherently low by com-

parison with monopropellants or storable biprogellants, and the compatibility
and ease of integration with other systems of the Freedom Station provide a
high degree of synergism. The integration of the GOZ/GH2 propulsion sys-
tem into the Freedom Station systems and supply logistics program, including
off-loading orbiter excess water, will eliminate the need for supplying pro-
pellant to the space station. The 602/GH2 system is the lowest life-cycle

cost, by significant margins, of all systems studied.

As an outgrowth of the Freedom Station Phase B studies and results of
Rocketdyne company-funded effort, which was initiated in 1984 for Tlow-thrust
GOZ/GH2 rocket engines, Rocketdyne was awarded a contract by NASA-Lewis
Research Center (LeRC) in March 1987 to design, fabricate, and deliver for
evaluation a 602/6H2 thruster.

The program consisted of two phases comprising the following tasks:

. Phase I: Preliminary and Final Design, Fabrication, and Testing

. Task 1T 60,/GHy Thruster Preliminary Design

. Task II Thruster Final Design

. Task III Thruster Fabrication

. Task IV Performance Optimization and Character-
ization

. ‘Task Vv Delivery

. Task VI Reports

RI/RDBB-256
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. Phase II (Option): Fabricate and Test Second Thruster

Task VII (Option) Fabricate Second Thruster

Task VIII (Option) Performance Optimization and Character-
ization

Task IX (Option) Long-Life Testing

Task X Delivery

The contract start date was 5 March 1987, with funding allocated for
Phase I. The contract was amended on 30 April 1987 to perform Tasks VII
through X of the Phase II Option.

The major program milestones and their completion dates are listed in
Table 1-1.
Table 1-1. FProgram Milestone Completion Dates
Task #ilestone Completion Date
1 GGZ/GH2 thruster preliminary design 25 March 87
II Final design review 25 March 87
1981 Complete fabrication and assembly 20 August 87
Iv Deliver thruster to NASA-MSFC for test 28 August 87
Complete characterization tests 3 March 88
v Beliver thruster to NASA-LeRC 28 September 88
VI Deliver final report to NASA-LeRC 15 November 88
VII Complete fabrication of second thruster 19 March 88
(Option) ,
VIII Complete characterization tests 10 March 88
(Option)
IX Compliete long-Tife tests (at LeRC
(Option) Facility)
X Deliver second thruster to NASA-LeRC 6 October 88

The basis of the thruster design for this prograh was the configuration

emanating from the Rocketdyne GOZ/GH2 prototype thruster program initiated

in 1984. The program successfully demonstrated 87,399 s (24.3 h) of firing

time over a mixture ratio range from 3.1 to 8.1 and 10,500 thrust pulses of
approximately 0.5-1bss impulse each. The design was ready for preliminary

and final design reviews at program start.
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Fabrication was performed at Rocketdyne. Vendors were used for selected
detail part machining. Checkout, calibration, cold flow, and assembly
operations were performed in the Rocketdyne Engineering and Material
Laboratories. Thruster hot-fire testing was performed at Marshall Space
Flight Center (MSFC), Huntsville, Alabama, in the test stand 302 vacuum
chamber and test facilities. The Oxygen/Hydrogen Propulsion Systems Test Bed,
Contract NAS8-36418 (Reference 1), was installed in the facility during the
performance of this contract effort. The 302 facility and the test bed were
used to perform the thruster hot-fire testing.

One hundred and four tests were conducted to provide data for performance
optimization and characterization of the two thrusters produced. Included
were several tests conducted with the original Rocketdyne prototype thruster
hardware and an existing "low-heat flux" injector, designed and fabricated by
Rocketdyne. These latter tests anchored the data from the new units to pre-
vious work and provided information Lo assist in the production of the flight
thruster design, performance, and life.

Table 1-2 summarizes the hardware configurations and test experience to
date with the Rocketdyne 25 1bf hardware. Four injectors and three nozzles
have been tested for a total of 216 steady-state tests and 10,451 thrust
pulses. Testing time of 25.6 hours has been accumulated over a propellant
mixture ratio range of 3.1 to 8.5. The life, performance, and pulsing
capability of the thruster has been demonstrated. Hardware characteristics
and configurations to enhance durability and 1ife without performance
degradation have been defined.
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2.0 REQUIREMENTS

The design and performance requirements for the 602/6H2 thruster es-
tablished by the contract are presented in Table 2-1. A chamber pressure of
100 psi, an expansion ratio of 30:1, and thrust chamber regenerative cooling
were chosen as the nominal design points.

Table 2-1. Summary of Thruster Design Parameters

Parameter

Requirement

Design mixture ratio
Mixture ratio range

Life capability

Specific impulse (@ MR 8.0)
Minimum impulse bit
Propellant temperature
Thrust

Thrust throttle range
Chamber pressure

Nozzle expansion area ratio
Ignition and propeliant valves
Cooling technique

8.0

3.0 to 8.0

2x106 1b-s, minimum
346 1bf-s/1bm

5 1bf-s/1bm

80°F, maximum

25 1bf +51bf

50% to 125% thrust
100 psia nominal
30:1

Integral flight type

Regenerative cooling

R1I/RDB8B-256
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3.0 THRUSTER DESIGN AND FABRICATION

This section summarizes the design and fabrication of the thruster and
its component parts. The thruster, shown in cross section in Figure 3-1 and
in external view in Figure 3-2, consists of a downpass regeneratively cooled
thrust chamber; a coaxial injector assembly; individual fuel and oxidizer
solenoid valves; and an igniter. (Appendix A contains detail assembly and
component drawings.)

Minor modifications were made to the LeRC thruster components to incorpo-
rate lessons learned from the prototype efforts. These modifications are sum-
marized in Table 3-1. The chamber hydrogen coolant channels were resized and
increased in number from 24 to 30. The chamber hydrogen inlet manifold was
simplified. The injector material was changed from 321 SS to 316 SS to en-
hance propellant compatibility. The injector oxidizer post recess was reduced
from 0.080 in. to 0.060 in. to reduce the possible incipient erosion of the
oxidizer post tips. The braze joint between the flange and combustion chamber
was redesigned to improve integrity and fabrication. Chamber-to-injector
details were changed to improve hot gas-sealing and chamber-to-injector cen-
tering characteristics. Details of the resulting combustor, injector, ig-
niter, and valves designs are discussed in subsequent sections.

3.1 THRUST CHAMBER

The thrust chamber (Figure 3-3), consisting of a 1.5-in. long combustion
chamber and a 2.81-in. long nozzle, is hydrogen cooled. The nozzle length is
80% of a 15-deg half-angle cone with an expansion area ratio of 30.

The thrust chamber is cooled by single downpass of hydrogen using the
flow path shown in Figure 3-1. The incoming ambient hydrogen is introduced
through dual inlets in the flange at the injector<end of the thrust chamber
and flows down the coolant passages to the nozzle end of the thrust chamber.

RI/RD88B-256
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Table 3-1. Summary of Modifications to Thruster from Prototype

Component Prototype LeRC Modification

Nozzle Coolant Channel

e Number 24 30

e Width x depth 0.040 in. x 0.030 in. 0.020 in. x 0.030 in.

e Channel flow (0.017 in2)* 0.018 in2

area (total)

Nozzle Supply Manifold Dual Single
Injector

e Material 321 SS 316 SS

e Oxygen post recess 0.080 in. 0.060 iin.
Chamber to Injector

e Seals Dual seals Single seal

e C(entering Bolts Injector pilot 0D

*With 0.025 in. wires inserted in channels to enhance heat transfer
characteristics

RSO TIRY
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The heated hydrogen is transported through the return tube through a fitting,
which splits the flow for dual inlets into the hydrogen injector manifold, and
is then injected into the combustion chamber through the fuel annulus in each
of 12 injector elements.

The chamber inner liner (Figure 3-4) is machined from NARloy-Z, a high-
strength copper alloy, and contains 30 coolant passages. These passages are
0.020 in. wide and 0.030 in. deep in the combustion chamber and throat areas.
In the nozzle area, the channel width is increased to 0.060 in. and the height
transitions from 0.030 in. in the throat area to 0.060 in. in the nozzle
area. See Appendix A Part No. 7R033603. The open channels in the liner are
closed out by electrodepositing an outershell of nickel over the NARloy-Z
liner. The coolant passages are filled with a wax prior to copper plating and
electroforming of the nickel. The wax is removed after electroforming to pro-
duce the hydrogen coolant passages. A layer (0.003 to 0.005 in.) of copper is
deposited prior to the nickel to prevent hydrogen embrittlement of the nickel
during thruster operation. Prior to the closeout of the channels, the inlet
flange/manifold and outlet manifolds (Figure 3-4) are brazed to the chamber
liner.

Figure 3-4. Thrust Chamber Components (1X291-4/30///85-C1C*)

RI/RDBB-256
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3.1.1 Thrust Chamber Thermal Design and Predicted Life

A thermal analysis was conducted to define a coolant channel configura-
tion for the LeRC thrust chamber that emulated the heat transfer of the pro-
totype thrust chamber but with a reduced coolant channel pressure drop. A
configuration was selected that increased the number of channels from 24 to 30
and reduced the channel cross section from 0.030 in. wide by 0.040 in. deep at
the throat to 0.020 in. by 0.030 in. The predicted pressure drop, at a
mixture ratio of 8 and a chamber pressure of 100 psi, was 46 psi. At a
mixture ratio of 3, the predfcted pressure drop was 97 psi (Figure 3-5). The
predicted combustion gas side wall temperature profile at a mixture ratio of 8
with the redesigned coolant channels is shown in Figure 3-6(a). The measured
prototype temperatures used to correlate and anchor the analysis are also
indicated. The prediction was based on the measured total heat load to the
hydrogen coolant. The maximum wall temperature, which occurs near the throat,
was predicted to be 1120°F, which is acceptable for long 1ife. The measured
back wall temperature is also shown. The temperature profile within the
thrust chamber NARToy-Z liner was predicted by computer analysis. A sample
channel cross section is shown in Figure 3-6(b). The measured back wall
temperature in the throat region is predicted to be approximately 75°F lower
than the combustion gas side wall temperature (Figure 3-6(b)). Thermal
conduction in the axial direction and boundary layer effects not included in
the model tend to smooth out the actual temperature profile. The maximum waill
temperature was predicted to be less than 800°F at a mixture ratio of 3
(Figure 3-7).

Figure 3-8 presents the projected NARloy-Z nozzle thermal fatigue
characteristics and depicts cycle life in terms of full thermal cycles as a
function of nozzle wall radial temperature differential. If the calculated
value of wall temperature differential (AT) is used (75°F), the expected
thrust chamber cycle 1ife would exceed 100,000 full thermal cycles. Several
seconds of firing time would be required to create a full thermal cycle.

Short pulse tests would not be expected to create the maximum temperature
differential.

RI/RD88B-256
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NUMBER OF ITERATIONS = 899

DIFFERENCE BETWEEN HEAT IN AND HEAT OUT = .0Q3057 PERCENT
HEAT INFLUX = 5.154
2-D/1-D Q/A = .97783
HOT GAS WALL
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10. HC FACTOR FOR UPPER WALL = 1.0000

11. HC FACTOR FOR LOWER WALL = 1.0000

12. EXPONENT = .5500
13-14. K OF REGION 1 = .004774 + ( O. ) o T
16-16. K OF REGION 2 = ,004774 + ( 0. )Y+ T
17-18. K OF REGION 3 = .000900 + ( O ) s T
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.0010 DEG. F
20. COATING THICKNESS = 0.000000
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Figure 3-6(b).
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3.1.2 Expansion Area Ratio Effects on Chamber Coolant Temperatures

The prototype and LeRC thrust chamber expansion area ratio of, €, 30:1
was chosen as a compromise between specific impulse, thruster temperature, and
test facility vacuum pumping capability. The test results clearly indicate
that an increase in expansion area ratio could be realized for flight-type
hardware. This is particularly true for the low-heat-flux injector, since it
lowers the hardware temperature and increases design margins significantly.
An increase in expansion ratio can be accomplished by adding a radiation-
cooled expansion skirt, by extending the cooled portion of the nozzle, or a
combination of both. The hardware temperature at the attachment point of an
uncooled skirt decreases as the expansion area increases. This type of hard-
ware design would involve tradeoffs to be performed considering the tempera-
ture at the attach point, materials to be used for the uncooled skirt, and the
details of the attachment point. To provide some insight for design trade-
offs, the increase in coolant temperature was approximated for increases in
expansion ratio beyond 30. Figure 3-9 displays the results of the
calculations.

3.1.3 Thrust Chamber Fabrication

External skin temperature circumferential variations and the higher-
than-predicted thrust chamber flow pressure drop observed during testing
raised questions concerning the coolant passage dimensions. Flow tests using
hot and cold water and infrared cameras (similar to procedures used for the
Space Shuttle Main Engine [SSME]) did not show any blocked passages. No other
nondestructive inspection method was readily available for verifying channel-
by-channel dimensions along the length of the thrust chamber.

A spare thrust chamber liner was available that had not had the nickel
electroform closeout completed. The channels were open for detail inspec-
tion. The flange and exit manifold had been brazed to the liner. A detailed
channel-by-channel dimensional inspection was made on this spare liner. Three
discrepant characteristics were found: variable channel depth and two

RI/RDB8B-256
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discontinuities in the bottom of the channel caused by improper programming of
the digital-controlled machine by the vendor that milled the channels in the
liner. The results are shown in Figure 3-10.

The discrepancy in the combustion section was a 1ip or cusp in the bottom
of the channel caused by a nonoverlap of starting and stopping the milling
cutter used to machine the channels. The lack of cutter start and stop center
overlap caused a small piece of metal to be left in the channel bottom, which
obstructed the hydrogen coolant flow. Also, a machining step immediately
downstream of the throat section apparently caused by a milling machine pro-
gramming error at the transition from the throat radius to the bell contour of
the nozzle. The effects of this step on the thrust chamber coolant flow,
while not desirable, were considered minimal.

The variable channel-to-channel depth was apparently caused by off-center
tooling, which presented the nozzle blank in a concentric manner to the pro-
grammed, moving, milling cutter.

The cusp and the machining step were built into the fabrication computer
program; therefore, their presence in LeRC 1 and LeRC 2 thrusters is ensured.
The presence or absence of the variable channel depth cannot be verified, nor
can its circumferential relationship to the nozzle flanges be verified.

The cusp reduces the coolant flow area by 30 to 50%, which has a marked
effect on the nozzle flow pressure drop and could cause sonic flow to take
place at the cusp. The high pressure drop and circumferential variable
temperatures can be explained by these effects but not quantified. The
increased coolant channel pressure drop requires that a correspondingly higher
inlet pressure be supplied to the thruster to maintain chamber pressure at
desired levels.

A full-length chapnel-by-channel inspection is recommended for the fabri-
cation of any future units.
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Figure 3-10. 25-1b Thruster Nozzle Channel Dimensions
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3.2 INJECTOR

Figure 3-11 shows the injector prior to assembly and braze. Six of the
oxidizer posts have been inserted into the injector body for illustrative pur-
poses. The injector body components and oxidizer posts were fabricated from
316L SS bar stock. The tube components were fabricated from 321 SS tubing.
The injector faceplate is NARloy-Z. The igniter/spark plug is located at the
center of the injector. Nine percent of the oxidizer flow is introduced into
the igniter cavity by two 0.030-in. orifices drilled into the oxidizer inlet
manifold. The remaining oxidizer is introduced into the combustor through the
12 oxidizer posts. These posts are located in the center of the 12 coaxial
elements and are recessed 0.060 in. from the injector face. The oxidizer
igniter flow is surrounded by 6"2' introduced through twelve 0.016-in. ori-
fices that provide like-on-1ike impinging streams. The combustior uses hydro-
gen for boundary layer coolant (BLC). The BLC is introduced through twelve
0.039-in. showerhead orifices located at the perimeter of the injector. The
primary hydrogen flow is injected into the combustion chamber through the an-
nulus formed by the outside diameter of the oxidizer post and the hydrogen
orifice wall. This coaxial element mixes and distributes combustible gases
into the combustion chamber, providing a flow field consisting of an oxygen
core surrounded by a hydrogen annulus. Table 3-2 displays the flow distribu-
tion to various injector distribution elements. Figure 3-12 shows a face-on

view of the injector and indicates the propellant injection fealures.

3.2.17 Injector Fabrication

To verify flow areas and characteristics, the injector element dimensions
were measured after assembly. Table 3-3 summarizes the results of the work
and presents the drawing tolerance limits for reference.

The control of the fuel annulus gap variations and the concentricity of
the fuel annulus to the oxidizer post outside diameter could have been

improved. These variations probably contributed to the circumfereniial
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G

Figure 3-11. G0/GHp Injector Assembly Layout
(15521-8/8/87-C1B*)

Table 3-2. Injector Flow Distribution

Flow Area
Element (%)
Oxidizer
Igniter 0.30-in. orifice (2) 3.0
Coaxial 0.060-in. ID posts (12) 91.0
Fuel
Igniter 0.016-in. orifices (12) 6.6
BLC 0.039-in. orifices (12) 39.2
Coaxial 0.094-in. 0D x 0.082-in. ID annulus (12) 54.2
Igniter mixture ratio 13.4
Coaxial element mixture ratio 10.9
Overall mixture ratio 8.0

RI/RD88-256
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BoundaryLayer Colant
40% BLC - 0.039 dia (12 each)

Fuel Igniter Orifices {12)
0.016 dia

park Plugand §
xidizer Annulus

% Oxidizer/Fuel Element (12)

& Ho Cup Diameter - 0.084

& Op Post Diameters - 0.082 0D 0.062 ID
@ H2 Fuel Annulus - 0.006

7 Post Recess - .06

Figure 3-12. LeRC 25-1bf GOZ/GH2 Injector (1X225-10/28/75-C1B*)

Table 3-3. Injector Element Dimensions (After Assembly)

Concentricity of
Fuel Annulus Fuel Annulus
Gap (in.) to Oxygen Post (in.)
Injector Minimum | Maximum | Minimum | Maximum | Average
LeRC 1 0.0032 0.0076 0.0003 0.0026 0.0013
LeRC 2 0.0032 0.0113 0.0016 0.0039 0.0029
Low-heat-flux 0.0045 0.0098 0.0005 0.0036 0.0019
Drawing regquirements | 0.005 0.007 0.000 0.003 NA
Recommended 0.0055 0.0065 0.0000 0.0006 NA

RI/RD88-256
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variations in the thrust chamber external nozzle skin temperatures observed
during testing. The testing pointed out the need for improved (tighter)
tolerances to reduce the flow variations in the injector. Any units fabri-
cated in the future should have reduced dimensional tolerances concerned with
flow area variations and the oxidizer post concentricity to the fuel annulus.
Recommended values are included in Table 3-3.

3.3 VALVES

The thruster incorporates separate, identical fuel and oxidizer valves.
The valves (Figure 3-13) are manufactured by Wright Components
(P/N 18001-11). These valves are a direct-operated, normally closed, spring-
return, coaxial solenoid valves. The valves operate on +28 Vdc. These valves
have proven to be very reliable during extensive endurance and pulse mode
testing of the prototype and LeRC thrusters.

3.4 IGNITION SYSTEM

Conventional electrical high-voltage spark ignition systems were used
throughout the program. Three systems (i.e., [SSME, Simmonds Precision, and
J-2]) were used as summarized in Table 3-4. A1l systems used the Simmonds
Precision spark plug (Figure 3-14). The SSME-type system used the SSME quali-
fied exciter (Figure 3-15) threaded directly to the spark plug. This approach
is planned to be applied to the flight hardware for the Freedom Station.

Prior to the contract award, two SSME exciters were modified to increase
the spark rate from 75 sparks/s to 225 sparks/s. This modification was made
to accommodate the .anticipated minimum thrust pulse duration of 30 ms. The
modification to the SSME exciters was improperly fabricated (or installed) and
the exciter units would not perform. Subsequent studies have shown that a
pulse duration approximating 250 ms is adequate, and the qualified SSME pro-
ducing 75 sparks/s satisfies the need without moedification.
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Table 3-4. Spark Igniter Systems

Spark

OQutput Voltage Input Voltage Spark Energy Rate

System (kV) (V) (MJ/Spark) (Hz)
SSME (Modified)* 8 ‘ 20-24 12 225
Simmonds 6.8 10-30 250 60
J-2 20-32 24-30 90 50

*Modified from 75 sparks/s for the gqualified SSME igniter.

4957-11

Figure 3-14. Simmonds Precision Spark Plug (SC87D-13-296)

An aircraft-type exciter with spark cable was available from Simmonds
Precision, and two units were ordered for use in the program. In Figure 3-16,
the Simmonds Precision unit is shown with the cable (without the pressurizing
sleeve) assembled to the thruster. These units worked only sporadically in
the high-vacuum test firing chamber of test stand 302 at MSFC.
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4957-13

Figure 3-16. LeRC 1 Thruster with Simmonds Exciter
and Cable (14421-8/20/87-C1A%)
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The J-2 exciter from the Rocketdyne J-2 engine had been used successfully
during the prototype testing and pulsing in the same vacuum facility. The J-2
exciter, cable, and pressurizing sleeve (Figure 3-17) were employed after the
Simmonds Precision units proved unsuccessful at the vacuum condition. To pre-
vent arcing, the spark cable was jacketed by a sleeve containing atmospheric
ambient pressure. The sleeve extended from the remotely mounted exciter to
the spark plug. No further problems were encountered except when, on occa-
sion, the pressure integrity of the cable jacket was inadvertently compromised.

3.5 INSTRUMENTATION

Both the injector and chamber were fabricated with pressure taps, with
1/8-in. tubes brazed into these taps for ease of interfacing. The taps are
located in the hydrogen chamber inlet manifold, hydrogen injector inlet
manifold, oxygen injector inlet manifold and at the head end of the spark plug
bore for chamber pressure. (See Appendix A, Orawing 7R033657 Section A-A and
7R033603.) Marotta transducers were used for pressure measurement.

Internal gas temperatures of the hydrogen and oxygen manifolds were
measured with inconel type K thermocouples (1/16-in. sheath) inserted through
the pressure tubes and into the manifold flow field. Pressures were measured
through a tee fitting used to install and retain the thermocouples in the
tube. The thruster external temperatures were measured with chromel-alumel
type K thermocouples which were spot-welded to their respective positions on
the skin of the injector and chamber.
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Figure 3-17. LeRC 2 Thruster, J-2 Exciter, Cable,
and Pressurizing Sleeve (15561-9/1/88-C1*)
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4.0 HOT-FIRE TESTING

The thruster was tested in conjunction with the Freedom Station propul-
sion test bed program. The test bed installed in the 20-ft-diameter altitude
test cell 302 at MSFC (Figure 4-1) is designed to be representative of a space
station propulsion system and consists of the propulsion module, propellant
storage module, and electrolysis module. These modules can be operated indi-
vidually or in combination with each other. 1In this program, the thruster was
operated in conjunction with the propellant storage module. The thruster is
shown installed in the propulsion test bed (Figure 4-2), and the test log,
summarizing the tests conducted and objectives, the hardware used, the test
conditions and results, and remarks (as applicable) for each test, are
presented in Table 4-1.

. Vacuum Facility
: 302

Figure 4-1. Vacuum Facility 302 (86D-9-706)
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4957-16

Figure 4-2. Thruster Installation in Propulsion Test Bed
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To evaluate the 25-1bf thruster tested during the program, 104 tests were
conducted. Three tests were inert blowdown tests conducted to verify the
integrity and sequence control of the thruster integration with the test bed
and test facility. The thruster did not ignite in 24 of the hot-fire
attempts, as subsequently discussed; 77 tests were successfully performed to
produce useful hot-fire data.

Fourteen of the nonignition tests were from 18 attempts to fire the
thruster using the Simmonds Precision exciter and pressurized cable. Specific
reasons for the Simmonds Precision malfunction were not successfully delin-
eated because of time and funding constraints. Pressure loss (introducing
vacuum) in the cable pressurizing sheath was a prime suspect. Later in the
p?ogram it was discovered that the facility-supplied voltage (at the test bed)
was below specifications on cccasion. The low voltage and/or presence of a
vacuum in the cable pressurizing sheath could preclude thruster ignitions.

During the remainder of the program, 10 other lests were attempted that
did not produce combustion. Five of these were caused by propellant valves
failing to open as a result of excessive inlet pressures supplied to the valve
or by insufficienl voltage supplied to open the valve. Five were caused by
jgnition cable sheath pressure leaks introducing vacuum around the cable.

After the unsuccessful attempts to fire the LeRC 1 thruster and Simmonds
Precision igniter, this equipment was removed from the facility and replaced
with the prototype thruster and J-2 exciter. After a series of five success-
ful ignition-only prototype thruster tests, the LeRC 1 unit was reinstalled
using the J-2 exciter, and no further ignition problems were encountered dur-
ing the remainder of the testing. Table 4-2 summarizes the program tesling.
The discussion, analysis, and performance data shown herein present results
obtained from the 77 successful performance, operation, and compatibility
tests.
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Table 4-2. Summary of Tests Performed

Number

Test Performed/Failures of Tests
Blowdown, facility 3
Simmonds Precision exciter nonignition 14
Valve overpressure/low voltage 5
Vacuum leak, nonignition 5
Performance/operation/compatibility _1n
Total tests and attempts 104

Four injectors and three thrust chambers were tested during the program.
The injectors consisted of the two LeRC units produced during the program, ihe
Rocketdyne prototype unit, and an advanced version, called the "low-heat-flux
injector,* (LHF) produced by Rocketdyne. The low-heat-flux injector was
configured for 0%, 15%, and 40% levels of boundary layer cooling (BLC).

The thrust chambers tested consisted of the Rocketdyne prototype and the
two thrust chambers produced during the program. Six combinations of injec-
tors and thrust chambers were tested, as summarized in Table 4-3. To deter-
mine if 1ihe measured uneven circumferential temperature distribution
(discussed later) was caused by injector or thrust chamber effects, five tests
were conducted with the LeRC 2 injector rotated 135 deg from normal position.
Tests were conducted with the prototype injector assembled to the LeRC 2
thrust chamber to verify performance of the injector in the new thruster and
to anchor the test results to previous prototype data. Also, measured thrust
chamber circumferential and axial temperature distributions were compared to
determine variations from prototype to LeRC designs.

4.1 PERFORMANCE DATA

The original data were computer printouts generated from the FM digital
tapes recorded during the hot-fire testing. These data were analyzed to
obtain basic thruster performance parameters and compared to predicted results
and requirements.
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Table 4-3. Hot-Fire Test Injector and
Thrust Chamber Combinations

Accumulated
Number of Test
Thrust Hot Firing Time
Injector Chamber Tests (s)
LeRC 1 ‘ LeRC 1 31 2,001
LeRC 2 LeRC 2 14 164
Lere 22 LeRC 2 5 356
Prototype Prototype 5 5
Prototype LeRC 2 2 155
Low-heat-flux®  LeRC 1 20 1,374
Total 71 4,655

dTested with the injector rotated 135 deg from
normal position.

bD%. 15%, and 40% BLC configurations were tested.

The gaseous oxidizer and gaseous fuel flow rates were measured using
sonic venturis installed in the inlet tubing on the propulsion test bed.
These venturis were calibrated against a standard traceable to the National
Bureau of Standards. The flow rates were calculated using the calibration
data and the measured venturi inlet pressures and temperatures. The pressures
and temperatures were measured using accepted practices and equipment that are
not elaborated upon herein.

The thrusi was measured by a load cell system (Figure 4-3) designed and
fabricated by Rocketdyne specifically for the 25-1bf thruster thrust measure-
ment as part of the Freedom Station Propulsion Test Bed contract. The
installed system, shown in Figure 4-2, uses a measuring load cell in series
with a calibrating cell and a ram for in-place thrust calibration. The thrust
system calibrations showed very linear, repeatable results, consistent with
the historical data on similar systems in use.
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4957-17
Figure 4-3. Load Cell System for Thrust Measurement
(15576-2/19/87-S1A%)

4.1.1 Performance Prediction

The prototype thruster data were used as a baseline for combustion per-
formance (C*) to predict the performance of the LeRC thruster. The JANNAF
performance prediction codes (Reference 2) and a Rocketdyne laminar and

turbulent boundary layer analysis code were used to complete the performance
modeling.

The results of the specific impulse modeling predictions, based on the
prototype thruster measured C* performance over the mixture ratio range, are

shown in Figure 4-4. The JANNAF prediction indicates a specific impulse of
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Figure 4-4. Specific Impulse Performance

406 s and 346 s at mixture ratios of 3 and 8, respectively using the measured
C* efficiency. The Rocketdyne boundary layer model predicts 7 s greater

specific impulse over the mixture ratio range. A_predicted performance curve
intersecting 346 s at MR = 8 is used in all subseduent performance graphs as a

reference. The corresponding thrust coefficient and theoretical C* (JANNAF)
predictions are shown in Figure 4-5.

The C* efficiency calculated from test data decreased from 93% at a mix-
ture ratio of 3 to 91% at a mixture ratio of 8. The reasons for this charac-
teristic are unknown but an. examination of the injector design can perhaps
show a reason for the decrease. The combustion efficiency produced by a coax-
ial injector is governed significantly by the mixing uniformity of the oxi-
dizer and fuel within the injector elements. The mixing parameters and C*
efficiency are improved as the ratio of the fuel to oxidizer injection veloc-
ity is increased. As the operating mixture ratio of the thruster is increased,
the fuel flow is reduced, and this ratio is decreased. This probably results
in the reduced mixing and combustion (C*) efficiency observed in testing.
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Figure 4-5. Thrust Coefficient and C* Versus Mixture Ratio

The effect of combustion chamber pressure on predicted specific impulse
is shown in Figure 4-6. The specific impulse decreases by 16 s for a decrease
in chamber pressure from 100 to 50 psia.

To complete the performance projection, the specific impulse calculations
were expanded to show the expected results if the nozzle area ratio were to be
increased from the 30:1 value used. Figure 4-7 shows the results in terms of
vacuum specific impulse as a function of expansion area ratio. The 350 s
value (MR = 8) obtained could be increased by 25 s to 375 s by raising the
expansion area ratio to 200.
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4.1.2 Data Analysis

Table 4-4 summarizes for each test the hardware configuration, test dura-
tion, data slice time, measured thrust, fluid flows, and the calculated per-
formance parameters. The flow rates, thrust, injector, and nozzle pressures
were calculated from the original test data printouts. The table also tabu-
lates the calculated parameters of specific impulse (I;p), characteristic
velocity (C*), thrust coefficient (CF), nozzle stagnation pressure, and
mixture ratio.

The specific impulse was calculated as follows:

L. —F m

The thrust coefficient was calculated as follows:

C = F ; (0.995 = nozzle throat flow discharge
F~ 0.995 Pons At coefficient)

The €* value was calculated from the hot-fire data as follows:

C* = Pcns Atg (2)
wo + Nf
where
L oxidizer flow rate (1b/s) =
wF = fuel flow rate (ib/s) =
F = vacuum thrust (1b),
=F measured * Aer 2
At = nozzle throat area (in")
Pc = measured chamber pressure (psia)
Isp = thruster specific impulse (s) (vacuum)
CF = nozzle thrust coefficient (dimensionless) (vacuum)
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>
n

- nozzle exit area (1n2) (nominal = 4.231 inz)
P = ambient pressure (psi)

Pcps = nozzle stagnation pressure: 0.992 (P.-0.81); (0.992 =
combustion chamber flow contraction ratio correction and
0.81 = pressure loss from point of measurement through the
injector face igniter port to the combustion chamber.)

g = the gravitational constant 32.2 ft/sz.

It should be noted that the  throat area, At’ was affected by nozzle
temperature, increasing as the nozzle heated during firing. Using the mea-

sured temperatures, the variation in throat area was established as a function
of thruster firing time as

2
At = AO(I+cAT) (3)
where
Ao = throat area at ambient temperature (0.1385 inz)
a = NARloy-Z thermal expansion coefficient (8 x 10‘6 in/in.°F)
AT = measured temperature change.

4.1.3 Thruster Performance Results

Variations in thruster performance parameters (C*, IS ) as a function
of run time were observed. Figures 4-8 and 4-9 show the variation in C*
efficiency and specific impulse (Isp) with run time for three representative
tests for both LeRC 1 and the prototype thruster. This variation was
attributed to improved hydrogen and oxygen mixing resulting from increased
hydrogen injection temperature and velocity as the hydrogen temperature
increased during the first 20 s(+) of thruster firing (see Section 4.1.1).
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The data indicate that 15 s(+) of thruster run time are required to
stabilize the rise in C* and IS . Specific impulse performance data
presented are shown at a time slice of 15 s (or more) to permit direct
comparisons and eliminate variations caused by time dependency early in the
firing.

The thruster specific impulse data are all presented as a function of
mixture ratio at a time slice of approximately 20 s measured from fuel valve

open signal. The predicted values, as described in Section 4.1.1, are shown
for reference.

Specific impulse and thrust coefficient for the LeRC thrusters calculated
from the test data are presented in Figures 4-10a and 4-10b. The data scatter
evident in the figures calculated from measured thrust and flow rates is
indicative of thrust measurement inconsistency. The data scatter was
attributed to structural hysteris in the thruster inlet plumbing and to some
variations in thrust calibration procedures. No reasons were found to cause
the pressure measurements or propellant flow measurements to be suspect.

Specific impulse calculated data are preiented in Figure 4-11 for the
prototype thruster and for the prototype injector installed in the LeRC 2
thrust chamber. The data follow the predicted curve quite well.

The LeRC 2 thruster assembly was tested in two configurations. One
series of tests (P103-184 through -188) was performed with the injector to
thrust chamber orientation rotated 135 deg from nominal position. This change
was made to determine if the circumferential heating effects were altered.
A1l other tests were performed with the injector oriented normaily.

An injector configuration that had been designed and fabricated by
Rocketdyne to reduce the heat flux to the thruster and enhance thruster life
was tested during the same period of this program. Data from tests of this
Jow-heat-flux injector with the LeRC 1 thrust chamber are presented in Fig-
ure 4-12. Testing was performed with combustor zone BLCs of 0, 15, and 40%.
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Figure 4-12. 25-1bf Thruster - Low-Heat-Flux

Injector Performance (20 s)
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A specific impulse at a mixture ratio of 8 at 355 s for 0% BLC, 337 s for

15% BLC, and 332 s for 40% BLC was observed. The recommended design of this
Jow-heat-flux injector (LHF) is predicted to produce 350 s of specific impulse
at a mixture ratio of 8, which is comparable to the LeRC 1 and 2, and proto-

type results. Significant combustion chamber heat transfer reductions were
demonstrated.

4.1.3.1 Chamber Pressure Effects. The effects of chamber pressure on speci-
fic impulse are shown in Figure 4-13. The hot-firing specific impulse data
followed the theoretical prediction well, but had a tendency to drop off the

predicted curve at lower chamber pressures (50 psia) by approximately
5 1bf-s/1bm.

4.1.3.2 Pulsing Performance. Pulsing performance can be defined as the
impulse generated by an actual thrust pulse considering thrust buildup, pro-
pellant leads, and shutdown sequencing actually obtainable as a percentage of
the impulse that would be generated by the same quantity of propellant burned
at the nominal thruster steady-state operation conditions. The following was
used to evaluate pulsing performance obtainable with the thruster:

1=(F=0)
j Fdt
1

=0

=0 4
350 tp (4)

where
tp = nominal pulse duration

The nominal pulse duration, tp, was defined as the time between oxi-
dizer valve opening and closing signals. A typical pulse transient is shown
in Figure 4-14. An analysis was performed using the procedure outiined pre-
viously, assuming a fuel lead at start of 20 ms and 20 ms fuel lag at cutoff.
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Figure 4-14. Pulse Profile
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The results are shown in Figure 4-15 as percent of steady-state impulse
obtainable as a function of pulse width. To prevent a drop in performance for
puise times of less than 200 ms, the fuel lead at start and lag at cutoff
could be reduced to near zero. Since losses always occur in the start and
cutoff, a performance of 100X cannot be achieved.

4.1.3.3 Thruster Thermal Characteristics. The thruster assembly was instru-
mented with thermocouples on the external surface to monitor thruster thermal
behavior during the hot-fire tests. Figure 4-16 displays thermocouple place-
ment and identification on the thruster. A significant parameter used to
evaluate thrust chamber heating and injector/combustor performance is the
thrust chamber hydrogen coolant temperature rise. Data from firings of the
prototype thruster and injector fired with the LeRC 2 thrust chamber are shown
in Fiqure 4-17. The hydrogen temperature rise for the prototype thruster was
900°F after 40 s of operation and the prototype/LeRC 2 combination would reach
about 850°F. The time-to-temperature relationship is similar for the two

thrust chambers. To reach thermal equilibrium, the thruster requires a 30- to
40-s firing time.
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Figure 4-15. Pulsing Performance

Figure 4-18 displays the time temperature behavior of the nozzle coolant
hydrogen for the prototype, LeRC 1 and 2, and low-heat-flux (LHF) injector
with the LeRC 1 thrust chamber. As shown in Figure 4-18, the LeRC 1 and 2

characteristics are similar to the prototype injector/LeRC 2 thrust chamber
combination.

The LHF injector produces a significantly reduced hydrogen coolant
temperature rise of 670°F, which is approximately 230°F 1less than the
prototype and 180°F less than the LeRC assembly. The LHF injector configur-
ation would, for the LeRC combustors, represent 79% of the total heat flux
produced by the LeRC injector configuration.

Cxternal hardware temperatures recorded during the hot-fire tests are
displayed in Figures 4-19 and 4-20. At each axial section of the thrust cham-
ber, the recorded temperatures were averaged to obtain the information shown.
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N
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-

T6029
P6020 5 ‘
T6010 Hy GAS INLET

003
P6016
\Tsoze Ho INJECTION
P6014

T6015 Oy INJECTION

4957-60

INSTRUMENTATION

. ODESTGNATION BESCRIPTION x -]

‘ 16001 HZ VALVE BRACKET TEMPERATURE -3.5 241.5
176002 H2 RETURN TUBE TEMPERATURE 2.6 0
T6003 H2 EXIT RANIFOLD TEMPERATURE 2.6 180
16004 NOZZLE TEMPERATURE, DOWNSTREAM OF THROAT -0.2 0
76005 TEMPERATURE AT UPSTREAM END OF CHAMBER -1.0 0
16006 INJECTOR TEMPERATURE AT 02 MANIFOLD -3.0 0
16007 INJECTOR TEMPERATURE AT SPARK PLUG -3.7 0
T6008 INJECTOR TEMPERATURE AT H2 MANIFOLOD -2.4 0
16009 THROAT CHAMBLR FLANGE TEMPERATURE -1.5 0
16010 K2 INLEY GAS TCMPERATURE -1.5 67.5

' T6012 NOZZLE TEMPERATURE UPSTREAM OF THROAY -0.2 ]
16013 MID COMBUSTION CHAMBER TEMPERATURE ~0.7 0
16015 02 INJECTION TEMPERATURE -3.0 22.5
16026 H2 INJECTION TEMPERATURE ~2.4 22.5
16027 CHAMBER THROAT TEMPERATURE 0 180
Te028 MID COMBUSTION CHAMBER TEMPERATURE -0.7 180
76029 TEMPERATURE AT UPSTREAM END OF CHAMBER -1.0 180
76030 (A) TEMPERATURE AT UPSTREAM END OF CHAMBER -1.0 90
716031 (B) TEMPERATURE AT UPSTREAM END OF CHAMBER ~-1.0 270
16032 (C) MID COMBUSTION CHAMBER TEMPERATURE -0.7 240
76033 (D) M10 COMBUSTION CHAMBER TEMPERATURE -0.7 120
T6034 (E) MID COMBUSTION CHAMBER TEMPERATURE -0.7 60
16035 (F) MID COMBUSTION CHAMBER TEMPERATURE -0.7 300
16036 (6) NOZZLE TEMPERATURE UPSTREAM OF THROAT -0.2 270
76037 NOZZLE TEMPERATURE UPSTREAM OF THROAT -0.2 180
76038 (1) NOZZLE TEMPERATURE UPSTREAM OF THROAT -0.2 90
T6039 HZ RETURN TUBE CXIT TEMPERATURE -1.5 0
P6014 02 INJECTION PRESSURE -3.0 22.5
P6016 W2 INJECTION PRESSURE -2.4 22.5
P6017 CHAMBLR PRESSURE -3.7 45
P6020 H2 INLET MANIFOLD PRESSURE -1.5 87.5

x = Measured from throat plane (+ downstream, - upstream)
e = 0 at return tube (clockwise looking downstream)

For an expanded view of the thruster, refer to thruster assembly, Figure A-1,
7R033601 in Appendix A.

Figure 4-16. NASA-LeRC 25-1bf G0p/GH Thruster
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Figure 4-19. 25~1bf GOp/GH> Thruster Comparison of
Temperatures for Prototype and LeRC 2

A comparison of the prototype thruster data and the prototype injector/
LeRC 2 thrust chamber data (Figure 4-19) 1indicates the LeRC thrust chamber
runs hotter toward the chamber injector end and cooler in the nozzle section
than the prototype thrust chamber. This result was typical of the new injec-
tors (Figure 4-20).

The differences 1in temperatures observed between LeRC 1 and 2 thrust
chambers were attributed to differences in the manufacture of the units. A
detailed discussion of these differences is given in Section 3.1.

The measured thrust chamber wall temperatures were significantly reduced
when the LHF injector was used. The average temperature in the thrust chamber
combustion zone was reduced by approximately 300°F.
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Figure 4-20. 25-1bf GO2/GHp Thruster
Comparison of Temperatures

Circumferential variations in measured surface temperatures were also
observed. Figure 4-21 displays measured results at the mid-chamber location
for the prototype injector/LeRC 2 thrust chamber, the LeRC 1 and 2 thruster
and LHF'injector/LeRC 1 thrust chamber. The thermocouple 76034 locations
seemed to be the typical *hot spot" for all configurations.

In an attempt to determine if coolant flow in the thruster or uneven
injector distribution was the main cause of the variations, the LeRC 2 unit
was assembled and hot fired with the injector rotated 135 deg, with respect to
the thrust chamber. Figure 4-22 displays the measured temperature distribu-
tion obtained and, for comparison, the results from the normally assembled
unit. The circumferential variations were reduced, but the 76034 locations
continued to read the highest temperature. The conclusion was that both the
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injector and thrust chamber had uneven flow characteristics. The extent of
the maldistribution could not be quantified from these data.

Evidence of flow maldistribution of the injector was seen in the flame
pattern on the interior surfaces of the thrust chamber. Figure 4-23 is a
photo of the inner thrust chamber walls looking toward the throat, and dis-
plays the flame pattern observed. The marks are discolorations only and would
disappear if the chamber was used with a different injector. No detectable
erosion was observed on any of the thrust chambers.

To assess flow distribution, a cold-flow program was instituted to mea-
sure the flow-from each injector element. The following section discusses
such tests and the results obtained.

4.1.3.5 Cold-Flow Testing. To measure the flow emanating from each injector
element, two types of laboratory experiments were performed in the Rocketdyne
Engineering Development Laboratory: water flow and gaseous flow.

The water flow tests were performed with the injector flowing at ambient
pressure and at very low flow rates (pressure drop) to preclude cavitation.
Flexible tubing was held over each orifice in turn, and the flow collected for
a specified time (usually 1 min). Both fuel and oxidizer circuits were tested
in this manner.

The gaseous flow tests were performed with gaseous nitrogen. The flow
from each element was collected with small, flexible tubing held over each
orifice in turn, as in the water flow experiments. The flow was measured by a
calibrated flow ball manometer. Pressure drops of 5 to 10 psig were main-
tained during the tests.

Figure 4-24 displays the results of the water and gaseous flow tests for
each oxidizer injector elément as a percentage of total injector oxidizer
(simulated) flow. Reasonable agreement is apparent between the water and
gaseous flow tests. The flame pattern, traced from Figure 4-23, is also
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Figure 4-23. LeRC 25-1bf G60p/GH)
Thruster Flame Patterns
(1XA25-10/28/87-C1E%)

shown. Correlation to the flow distribution patterns was considered suffi-
cient tb attribute the flame "streaking" pattern to the oxidizer flow distri-
bution. The "streaks" for elements 5 through 10 correspond to high flow
results from the water flow testing.

Attempts were made to calibrate or redistribute the flow by reaming or
scraping the interior of the oxidizer tube in the area of the two 0.043-in.
holes in the upper end of the oxidizer post (see Appendix A, draw-
ing 7R032629). As shown in Figure 4-25, the results were not successful.
Recalibration of the LHF injector to improve the flow distribution was quite
successful, however. Figure 4-26 displays the results of the efforts to
recalibrate and indicates the flow from each element was adjusted to within
+3% of the overall average.

Calibration of individual oxidizer posts in a fixture prior to assembly
into an injector is recommended for any future units to preclude oxidizer flow
maldistribution into the combustor.
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4.1.4 Thruster Operating Regime

The parameters governing the allowable operating conditions of the
thruster are the thrust chamber wall temperature (combustion gas side) and the
wall temperature differential from the combustion side to the back wall (cool-
ant side). The wall temperature differential will not vary significantly as
chamber steady-state operating conditions are changed (chamber pressure and
mixture ratio). The high conductivity of the NARloy material used for the
thrust chamber liner iends to level or smooth any temperature variations.

The external thrust chamber temperature measurements provide a reasonable
indication of the inside wall temperature and are used to establish “redline"
parameters for testing. These data and the thrust chamber heat transfer char-
acteristics, described above and in section 3.1.1, were used to establish safe
and marginal operating regimes for the prototype and LeRC thrusters and for
the thruster using the Tow-heat-flux injector. The results of a study are
shown in Figure 4-27, which portrays the safe operating regime as a function
of chamber pressure and mixture ratio. Data points for full duration (30 s+)
runs and for runs terminated by the external thrust chamber temperature
exceeding the established redline values are shown for reference.

Typical thruster operating parameters are presented in Table 4-5 for
oxygen and hydrogen temperatures and pressures at the thruster inlet and at
key locations throughout the thruster assembly. These are typical temperature
and pressure readings and are considered to be representative of the two
delivered units. Values of the parameters predicted for use in future
applications are also shown for comparison. Particular causes for variations
from measured values are discussed in Section 3.1. It is felt that, with
corrected fabrication procedures, the predicted pressure values are
satisfactory for use in future applications.
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5.0 CONCLUSION

The 25-1bf thrust oxygen/hydrogen thruster operation for the Freedom
Station was demonstrated, and two thruster assemblies were delivered to
NASA-LeRC for further demonstration testing and evaluation.

The thruster design was based on the successful prototype unit developed
during the Freedom Station Phase B studies as the result of Rocketdyne
company-funded effort. Although the prototype thruster was originally
designed for operation at a propellant mixture ratio of 4, interim modifica-
tions were made to the chamber and injector to provide increased cooling capa-
bility and thereby extend the operational range to a mixture ratioc of 8
(stoichiometric). The temporary modifications proved to be successful in
demonstrating long-term operational capability at the extended conditions.

For the current program, the high mixture ratio design modifications were
incorporated to adapt the basic design to operate throughout a mixture ratio
range of 3 to 8 in accordance with program requirements. A summary of the
modifications to the thruster assembly is presented in Table 3-1.

Over 100 tests were conducted during the current program to provide data
for performance optimization and characterization of the modified thruster
assemblies. When combined with previous exhaustive testing of the prototype
thruster, this 25-1bf thrust oxygen/hydrogen thruster has been tested more
extensively prior to design, development, test, and evaluation (DDT&T) than
any previous engine or thruster.

Manufacturing producibility of the thruster assembly has been validated
extensively during the fabrication of the two delivered units and the previous
prototype and experimental hardware. The sensitivity of performance to dimen-
sional tolerances in the hardware components requires careful specification,
inspection, and control during the fabrication phase. This is particularly
true of chamber coolant channel machining, and injector fuel annulus gap
variations and concentricity of the oxidizer injection posts. Recommended
tolerances for the latter are presented in Table 3-3.
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The deliverable thruster assembly designs were found to meet all program
requirements with no Timitations or qualifications. To extend this capability
even further in recognition of the rigorous, long-life requirements of the
Freedom Station flight configurations, additional design evolution should be
considered. For example, the incorporation of the low-heat-flux injector will
enhance propulsion system reliability and 1ife by a significant reduction in
temperature of thrust chamber hardware and hydrogen injection temperatures.

The anticipated safe, long-life operating regime of the thruster with the
prototype injector and low-heat-fiux injector has been establishéd as a func-
tion of chamber pressure and mixture ratio from data generated and is pre-
sented in Figure 4-27.

Typical measured values of temperalures and pressures throughout the two
delivered thruster assemblies are compared with predicted values of the para-
meters and presented in Table 4-5. Although there are some sizable variations
in pressures, causes have been identified, and the predicted values are satis-
factory for use in application studies.
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APPENDIX A
DRAWINGS

Included in this section are the drawings of the 25-1bf thruster and all
component parts. A complete Vist of the drawings is displayed in Table A-1.
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TABLE A-1.

LeRC 25-1bf GO/GHy, Thruster Assembly

Figure
Part Number Description Number
7R033601 Thruster - assembly of 25 1b 60,/GH; A-1
TR033603-1 Nozzle assembly 25-1b GOp/GH) A-2
7R033603-3 Nozzle machine contour
7R033603-5 Manifold ring
TR033603-7 Flange
7R033603-9 Closure
7R033603-13 Nozzle
TR033657 Injector - Coaxial downpass, assy of A-3
7R033657-3 Tubing
7R033657-9 Body
TR032648-1 Fitting injector downpass A-a
7R032648-3 Tee '
7R032648-5 Fitting
TR032648-7 Ring fuel
7R032648-9 Ring ox
7R032648-13 Tube
7R03262907 Oxidizer post A-5
7R03263005 Injector face plate A-b
7R033607-17 Standoff
7R033607-19 Standoff
7R033607 Tubing oxidizer and fuel A-7
7R033607-3 Fuel return
7R033607-5 Fuel return
7R033607-7 Fuel feed
7R033607-9 Fuel feed
7R033607-13 Oxidizer
7R033607-15 Fuel
18001-1 valve, solenoid 25-1b thrust A-8
29330 Valve assembly A-9
7R033602-1 Bracket assembly A-10
7R033604 Posts, valve standoff A-N
7433604-3 Post, ox valve
7433604-5 Post, fuel valve
7R033605-3 Bracket, valve support A-12
TR033656-~3 Plate A-13
7R035388-1 Spark plug assy, modified A-14
0398e/tab
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